An (almost) Symplectic View of Chaplygin’s Ball

نویسندگان

  • SIMON HOCHGERNER
  • LUIS GARCÍA-NARANJO
چکیده

Via compression ([11, 7]) we write the n-dimensional Chaplygin sphere system as an almost Hamiltonian system on T SO(n) with internal symmetry group SO(n− 1). We show how this symmetry group can be factored out, and pass to the fully reduced system on (a fiber bundle over) T S. This approach yields an explicit description of the reduced system in terms of the geometric data involved. Due to this description we can study Hamiltonizability of the system. It turns out that the homogeneous Chaplygin ball, which is not Hamiltonian at the T ∗SO(n)-level, is Hamiltonian at the T S-level. Moreover, the 3-dimensional ball becomes Hamiltonian at the T S-level after time reparametrization, whereby we re-prove a result of [4, 5] in symplecto-geometric terms. We also study compression followed by reduction of generalized Chaplygin systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Universality and Scaling of Zeros on Symplectic Manifolds

This article is concerned with random holomorphic polynomials and their generalizations to algebraic and symplectic geometry. A natural algebro-geometric generalization involves random holomorphic sections H(M, L) of the powers of any positive line bundle L → M over any complex manifold. Our main interest is in the statistics of zeros of k independent sections (generalized polynomials) of degre...

متن کامل

On Contact and Symplectic Lie Algeroids

In this paper, we will study compatible triples on Lie algebroids. Using a suitable decomposition for a Lie algebroid, we construct an integrable generalized distribution on the base manifold. As a result, the symplectic form on the Lie algebroid induces a symplectic form on each integral submanifold of the distribution. The induced Poisson structure on the base manifold can be represented by m...

متن کامل

Floer homology, symplectic and complex hyperbolicities

On one side, from the properties of Floer cohomology, invariant associated to a symplectic manifold, we define and study a notion of symplectic hyperbolicity and a symplectic capacity measuring it. On the other side, the usual notions of complex hyperbolicity can be straightforwardly generalized to the case of almost-complex manifolds by using pseudo-holomorphic curves. That’s why we study the ...

متن کامل

Toric symplectic ball packing

We define and solve the toric version of the symplectic ball packing problem, in the sense of listing all 2n-dimensional symplectic–toric manifolds which admit a perfect packing by balls embedded in a symplectic and torus equivariant fashion. In order to do this we first describe a problem in geometric–combinatorics which is equivalent to the toric symplectic ball packing problem. Then we solve...

متن کامل

Symplectic Embedding of Thin Discs into a Ball

We perform symplectic embeddings of ‘thin’ discs into a small ball in arbitrary dimension, using the symplectic folding construction.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009